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TIME-MARCHING METHODS FOR ODE’SI

e Discretization of spatial derivatives in the governing PDE’s

(e.g., the Navier-Stokes equations)

— Leads to coupled system of nonlinear ODE’s in the form

di _ F(d,t) (1)

dt

— Can be integrated in time using a time-marching method to

obtain a time-accurate solution to an unsteady flow problem.

— For a steady flow problem, spatial discretization leads to a
coupled system of nonlinear algebraic equations in the form

F(i@) =0 (2)

e Nonlinearity leads to iterative methods to obtain solutions.




Linearization will produce coupled systems of linear algebraic
equations which must be solved at each iteration.

These can be solved iteratively using relaxation methods

Alternatively, a time-dependent path to the steady state

Time-marching method to integrate the unsteady equations
— To accurately resolve on unsteady solution in time.

— Until the solution is sufficiently close to the steady solution.

When using a time-marching method to compute steady flows

— The goal is simply to remove the transient portion of the
solution as quickly as possible

— Time-accuracy is not required.

— This motivates the study of stability and stiffness.




Notation '

Using the semi-discrete approach
Reduce PDE to a set of coupled ODE’s

Consider the scalar case

d
d—?:u':F(u,t)

Subscript n, h = At, gives

u, =F, = F(un,t,) , t,=nh

Intermediate time steps involving temporary calculations u, u,

etc.

~

— Fn+a — F(an—l—aatn —+ Oéh)




Converting Time-Marching Methods to OAFE ’SI

Three representative examples of OAFE ’s

Upi1 = Uy + hu,,  Euler Explicit

Upt1 = Uy + hu,, . Euler Implicit

Predictor-Corrector

Upi1 = Uy + hu, Predictor

1 . -
Upp1 = §[un + Upy1 + b, ] Corrector




Converting Time-Marching Methods to OAFE ’SI

e Representative ODE:
du
dt

e Replacing v’ in Eq.” 4 Upt1 = Up + hu!,

= u' = Au + ae! (7)

Unt1 = Up + h(Au, + ae’“‘h”) or

Upt1 — (1 + Ah)u, = haet"™

e Implicit Euler method, Eq. 5, Up+1 = Up + AUy, 4

Upt1 = Up + h()\un—Fl + ae“h(”“)) or

(1 — Ah)Upa1 — Uy = het . getm




The predictor-corrector sequence, Eq. 6, gives

U1 — (1 4+ A0y, = ahel"™

1 ) 1 1 )
_5(1 + )\h)un—Fl T Up+1 — §un §ah€'uh( 1)

Coupled set of linear OAE’s with constant coefficients.
First line of Eq. 10 Predictor step: explicit Euler method.

The second line Corrector step: note that

71;1+1 = F(tp1,tn + 1)

Niipi1 + aetH(n+h)

(10)




Euler Explicit: Recursive Solution'

e Using Eq.8 with a = 0 (simplifies analysis)

Unt1 = (1 4+ Ah)uy,
e Let ug, time t = 0,n = 0 be initial condition (IC)
e Then

U1 = (1 + )\h)’U,O
us = (1 + Ah)ur = (1 + Ah) ug
us = (1 + Ah)us = (1 + Ah)’ug

Uy, = (1 + k) ug




Euler Implicit: Recursive Solution'

e Using Eq.9 with a = 0 (simplifies analysis)

1
Unp4+1 = (1 — )\h) Up,




Predictor- Corrector: Recursive Solution.

e Using Eq.10 with a = 0

Uni1 = (1 4+ Ah)u, : Predictor Step (13)

1
Unt1 = 3 (Uy, + Upt1 + AUpy1)  : Corrector Step (14)

e Substituting Eq.13 into Eq.14
1

e By recursion

1 n
Upsq = (1 + \h + 5(Ah)2> Ug




Recursive Solution with Forcing Function'

e Using Eq.8 with a # 0

Unt1 = (1 4+ Ah)u, + ae?™

((1 4+ Mh)ug + a) + aet" =
2ug + (14 A\h)a (1 + e“h)




Generalize Solutions, OAFE I

e Recursive solutions in general are difficult and complicated
e There is a generalize procedure for OAFE ’s

e Note the general form of the solutions, Eq.11,12, and 15

Uy, = O U

(1+ Ah)

(=)

(14—Ah4—%(AnP>




Notation and Displacement Operator'

e OAF difference displacement operator, F
Upt1 = Buy ,  Upyp = Ekun
e The displacement operator also applies to exponents, thus
b - p" = p"TY = B p”
where a can be any fraction or irrational number.

e For example:

2 1
Upao = Euy,, Upy 1 = F5u,

eHh(n+3) _ p3ouh(n)  guh(n=3) _ p—% guh(n)




Solution to Representative OAFE I

e The time-marching methods, given by Eqs. 8 to 10, rewritten

[E — (14 \h)]u,, = hae™ (17)

(1 = AW E — 1]u,, = h - Eae!"" (18)

U
=h ael"™ (19)

u
= dn

e Subsets of the operational form of the representative OAE

Q(E) - aet""




Predictor-Corrector:Matrix Form OAFE '

e Starting with Eq.10 and using F

Eu, — (14 Ah)uy, ahe!'"

1 1

—(1+ Ah)




General Solution to OAFE '

General solution for Q(E) - aet™™

cr(op)” + aeth™ . (21)
k=1

P(FE): characteristic polynomial, Q(E): particular polynomial
o are the K roots of the characteristic polynomial, P(c) = 0.

Coupled OAEFE ’s such as the Predictor-Corrector, Eq. 19
— Determinants used to form P(F) and Q(F)
— The ratio Q(F)/P(F) can be found by Cramer’s rule.




Examples of Solutions: OAFE I

e Luler Explicit: Eq. 17, we have

= h

h
et — 1 — \h

Un = c1(1 4+ Ah)™ + ae"™ .

e Implicit Euler method, Eq. 18, we have

(1—AR)E — 1




e Coupled predictor-corrector equations, Eq. 19,
— Solve for the final family u,,

— Intermediate family %, not used in general

e Using Determinants for P(F) and Q(F)

P(E) det ~(14AR)




e The o-root is found from

1
P(o) :0(0— 1 —\h— §A2h2) =0

e One nontrivial root, (¢ = 0 is trivial root)

1 n
Uy = c1<1+)\h+§)\2h2> +

sh(e™ +14 An)
eth — 1 — \h — 1A2h2

aelhm .




Establishing the o0 — A Relation'

Introduced to two basic kinds of roots

— A-roots: eigenvalues of the A, defined by space differencing
the original PDE

— o-roots: roots of the characteristic polynomial in a
representative OAE

o — A relationship: used to identify many of the essential

properties of a time-march method.

Solution to the ODE

— Cl(@Alh)n .Cl_f)l—l——|—cm<e>\mh)n [Zm—l—

+ ep (M) 2y + PS. (25)

Explicit Euler A-root given by o = 1 + A\h.




The solution for OAFE

U = c1(0)" 14+ cmlom)” Tm + -+

+ CM(O'M)n ZEM + P.S. (26)

where the c,, and the a?m in the two equations are identical and
om = (1+ Anh).

Correspondence between o, and e*™".

e can be expressed in terms of the series

1 1 1
M =T M SN 4 SNBSS AT
n.




e The truncated expansion ¢ = 1 + \h approximates e*"

Define ery = e* — o0 = O(\2h?).
OAFE solution is for wu,,

Typically define error for a derivative, e.g. er;

Define Order of accuracy p for OAE as: O(hP) = GTTA

Euler explicit OAFE : ery = O(h), a first order method.




Leapfrog OAFE I

e Leapfrog method:
Unt1 = Up—1 + 2hu,
e Characteristic polynomial
P(E) = E* —2)\hE — 1
leads to

07271 — 2 ,ho,,, —1 =0

e Each )\ produces two o-roots

of =\ _h4+/1+ A2 h2




For one of these we find

ot A b+ /14 A2 h2

1 1
1+Amh+§A?nh2——A4 ht 4 -

8 m
Approximation to e with an error O(A3h3).

Therefore: ery = O(h?), a second order method.

The other root, A,,h — /1 + A2 h2, is a spurious root.




Principal and Spurious Roots'

e Depending on the o — X relation

Application of time-marching method to the equations in a
coupled system of linear ODE’s always produces one o-root for

every A-root satisfying

1.9 o L (%, % k+1
o =1+ A+ SN 4ok AR+ OB

where £ is the order of the time-marching method.

There could be multiple o roots
One is always the principal, o1(h, \)
Note: o1(h = 0,) = 1.0, consistent with "* =1,h =0

All other roots are spurious, typically inaccurate, and hopefully

stable and small




Accuracy Measures of Time-Marching Methods'

e T'wo broad categories of errors used to derive and evaluate

time-marching methods.
— Error made in each time step, This is a local error.

Such as that found from a Taylor table analysis, used as the

basis for establishing the order of a method.
Error determined at the end of a given event, global error,

Covers a specific interval of time composed of many time
steps.

Useful for comparing methods




e Taylor Series analysis is a very limited tool for finding the more
subtle properties of a numerical time-marching method. For

example, it is of no use in:
— finding spurious roots.

evaluating numerical stability and separating the errors in
phase and amplitude.

analyzing the particular solution of predictor-corrector

combinations.

finding the global error.




Comparison of Exact ODE and OAFE Error'

e Exact solution to the representative ODE:

a (e(uh))”

b — A

u(nh) = c (eAh)n +

e Solution to the representative OAE’s, including only the

contribution from the principal root:

Un = c1(01)" 4 aet"™ -




Error Measures for OAFE ’SI

e ITransient error

— All time-marching methods produce a principal o-root for

every A-root that exists in a set of linear ODE’s.
Compare the unsteady part of Eq.30, e*"
With the unsteady part of Eq.31, o

Define, | ery = e™ — oy

With the Order of accuracy defined as O(hP) = ”TA

Or the term in the expansion of e which matches the last

term of er)y .




e Amplitude and Phase Error
— Assume A eigenvalue is pure imaginary.
Equations governing periodic convection.
Let A = iw where w is real representing a frequency.
Numerical method produces a principal o-root: complex

Expressible in the form
o1 = 0, + i0; ~ P (32)

The local error in amplitude: deviation of |o1| from unity

ere =1—lo1] =1 /(01)2 + (01)2

Local error in phase can be defined as

Cry, = wh — tan_l [(Ul)i/(al)r)]




— Amplitude and phase errors are important measures of the
suitability of time-marching methods for convection and wave

propagation phenomena.

e Local Accuracy of the Particular Solution (er,)

— Compare the particular solution of the ODE with that for the
OAE.

P-S-(ODE) = CLG'ut .

P-S-(OAE) = ae“t .

P(emrh)

— Measure of the local error in the particular solution: introduce

the definition
P-S-(OAE) }
er, = h —1 34

H {P-S-(ODE) ( )




— Multiplication by h converts the error from a global measure
to a local one, so that the order of ery and er, are consistent.

— Determine the leading error term, Eq. 34 in terms of the
characteristic and particular polynomials as

Co

er, = T {(p— )\)Q(e“’h) — P(e“h)}

— Expanded in a Taylor series, where

c, = lim flp = A)
° h—0 P(G”h)

The value of ¢, is a method-dependent constant that is often
equal to one.

— Algebra involved in finding the order of er, is quite tedious.

— An illustration of this is given in the section on Runge-Kutta
methods.




Global Accuracy I

e To compute some time-accurate phenomenon over a fixed

interval of time using a constant time step.
e Let T be the fixed time of the event and A be the chosen step size.

e Then the required number of time steps, is N, T'= Nh

— Global error in the transient

Ery =M — (al(Ah))N

— Global error in amplitude and phase

Erg=1- <\/<al>% + <01)3)N




wfen (5]

)
— wT — Ntan™ ! [(Ul)i/(01>r]

— Global error in the particular solution

Q")

Er,=(u—\) P ()

—1




Linear Multistep Methods'

The Linear Multistep Methods (LMM'’s) are probably the most
natural extension to time marching of the space differencing schemes.

1

1
/
Z QpUptk = h E Brty, g

Applying the representative ODE, v/ = A\u + ae*?, the characteristic
polynominals P(E) and Q(FE) are:




Linear Multistep Methods'

1 1 1
[( Z ozkEk> — ( Z BkEk) h)\] Uy = h( Z ﬁkEk> aethn
k=1-K k=1-K k=1-K

[P(E)]uy = Q(E)aet™

Consistency requires that o — 1 as h — 0 which is met if

ZOék:O and Zﬁk:Z(K+k_1)@k
k k

k

“Normalization” results in >, B =1




Families of Linear Multistep Methods'

e Adams-Moulton family
041:1, OzO:—l’ Ozk:(h k:_17_27

e Adams-Bashforth family: same «o’s with constraint: 5; = 0.

e Three-step Adams-Moulton method

U1 = Un + h(B1uy, 1 + Boty, + B-1uy,_y + B_2u,,_5)

Taylor tables can be used to find classes of second, third and
fourth order methods.




Examples of Linear Multistep Methods'

Explicit Methods

= un + hu, Euler

= Up—1 + 2hu’, Leapfrog
= up, + 3h[3ul, —ul,_4] AB2

n—1

= uy, + & [23ul, — 16ul,_; +5ul,_,]  AB3




Examples of Linear Multistep Methods'

Implicit Methods

= Up, + huy, Implicit Euler

= up, + shlul, +ul,_ ] Trapezoidal (AM?2)
= % [duy, — un—1 + 2hul, || 2nd-order Backward
Un, + 2% [5ul, ¢ + 8ul, —ul,_] AM3




Two-Step Linear Multistep Methods'

e Most general scheme (1 + &)uy1 =

[(1+28)upn — Sun—a] + A [ Oupyy + (1= 0+ @)up, — pup, |

e Examples:

Method

Euler
Implicit Euler
Trapezoidal or AM2
2nd Order Backward
Adams type
Lees
Two—step trapezoidal
A—contractive
Leapfrog
AB2
Most accurate explicit
Third—order implicit
AM3
Milne

B W W W INDNMNNNNDNDNNDN- -




e Both er, and ery are reduced to 0(h*) if p =& — 0+ 2

e The class of all 3rd-order methods & = 26 — %

e Unique fourth-order method is found by setting




Predictor-Corrector Methods.

e Predictor-corrector methods are composed of sequences of linear

multistep methods.

e Simple one-predictor, one-corrector scheme

~ /
Up+aq = Up+ ahu,

U1 Up + h[ﬁ?’lf,,bJra -+ ’yu;J

e o, 3 and ~ are arbitrary parameters.

= E* [E—1—(v+ B)Ah— aBN°h?]
EY .- h-[BE* 4+~ 4+ af\h]




e Second-order accuracy: both ery and er, must be O(h?).

o Leadsto: v+ 38=1 ; «af =
e Second-order accurate predictor-corrector sequence for any o

~ /
Upta = Un+ ahu,

| (5o (55
Up+1 Up + zh|| — |Upio T U,
2 o o




Predictor-Corrector Methods: Examplesl

e The Adams-Bashforth-Moulton sequence for kK = 3

n

Upi1 = Uy + %h[Su; — ! ]

e The Gazdag method

~ [~/ ~/
Un+1 Sun o un—l]

[~/ ~/
Un+1 | Un + un—i—l]




e The Burstein method o = 1/2 is

- 1
Un_|_1/2 = Up —+ §hu;l

Untl = Up + Wil )9
e MacCormack’s method

~ /
Ut 1 Uy + hu,,

1

Up+1 = §[un + Upi1 + ha;z+1]




Runge-Kutta Methods I

e Runge-Kutta method of order k: principal o-root is given by

1 1
a:1+>\h+§>\2h2+---+g>\kh’“

e To ensure kth order accuracy: er, = O(h**1)

e General RK(N) scheme

-~ /
Untaq = Up Bhun

~ / -~/
Un4ay, — Un 51 hun + "N hun_|_a

_|_
Unta, =Un ~+ [Pohul, +y2hu, , , + d2hi, fay
_|_

/ ~/ ~/
Upt1 = Unp p1hu,, + pahug, o, + ,ughunJral

+/“L4hﬂ;l—|—oz2




Runge-Kutta Methods I

e Total of 13 free parameters,where the choices for the time

samplings, a, a7, and as, are not arbitrary.

o B
o1 B1+m
ag = [Ba+y2+ 09

e Ten (10) free parameters remain to obtain various levels of

accuracy, ery, €rq, ery,, er,




Runge-Kutta Methods I

e Finding P(F) and Q(FE) and then eliminating the 8’s results in
the four conditions

1

2

3

4

p + p2 + 3+ pa 1
Lo + (i3] + [lgQeo = 1/2
p3ayr + pa(ays + apda) 1/6
[b407Y1 02 1/24

(
(
(
(

)
)
)
)

e Guarantee that the five terms in o exactly match the first 5

terms in the expansion of e*”.




e To satisfy the condition that er,, = O(h°)

to® + 30 + g0l 1/3
paa® + pzad + paos 1/4
paa’y1 + pa(a?ye + aids) 1/12
p3oa Y1 + pac(Qye + aqds) 1/8

e Gives 8 equations for 10 unknowns.




RK4 Method '

e Storage requirements and work estimates allow for a variety of
choices for the remaining 2 parameters.

e “Standard” 4'" order Runge-Kutta method expressed in

predictor-corrector form

~ 1
Upt1/2 = un+§hu;

. |
Upt1/2 = un+§hun+1/2

— ~/
Unt1 = Un + Rty )0

— 1 / -~/ ~/ —/
Un+1 Up + gh Up + 2\ Uy /0 F Up /9 ) Uy




Implementation of Implicit Methods'

e There are various trade-offs which must be considered in

selecting a method for a specific application.

— Representative ODE, v’ = \u + ae*t

(1 o )‘h)un—l—l — Uy = hell . qethn

— Solving for u,11 gives

1

Unt1 = 77 (tp + he!" - ael™)

— This calculation requires a division.




Implicit Euler For Coupled System'

—

e Implicit Euler applied to @' = Aud — f(t)

e The equivalent to Eq. 39 is

—

(I —hA)tpy1 — tUp = —hf(t+h) (40)

g1 = (I — hA) it — Bt + h) (41)

e The inverse is not actually performed, but rather we solve Eq. 40

as a linear system of equations.




Example I

The system of equations which must be solved is tridiagonal
(e.g., for biconvection, A = —aB,(—1,0,1)/2Ax)

Its solution is inexpensive in 1D,
For multidimensions the bandwidth can be very large.

Various techniques are used to make the solution process more

efficient.




Application to Nonlinear Equations'

Consider the general nonlinear scalar ODE given by

= F(u,t
dt (U’?)

Implicit Euler method:

Un+1 = Up + hF<un+17 tn—l—l)

Nonlinear difference equation.

Requires complicated non-linear solution process for , 1

— Example, nonlinear ODE:

du 1 ,




— Solved using implicit Euler time marching

1
Upt1 + hiuiﬂ = Uy,

— Requires a nontrivial method to solve for w1 1.
e Linearization to produce a solvable method

e Think in terms of small perturbations from a reference state




Local Linearization for Scalar Equations'

e Expanding F'(u,t) about some reference point in time.

e Reference value t,,, the dependent variable wu,,.

e A Taylor series expansion about these reference quantities

F(u,t) = F(tn,tn) + (g—i)n(u — Up) + (%—5)71(75 —tn)

1 [ 0°F 2 O*F
+§<€m2)n@*”“)'*(am%)n““_%”@_t”

1(0*F 9
+§<8ﬂ)n@—tu + .-

e Expansion of u(t) in terms of the independent variable ¢ is

ou 9*u
uu):un+@-¢@(5; -§3> +o.




e Assuming ¢ is within h of t,, both (t —¢,)* and (u — u,)* are O(h®),
and Eq. 46 can be written

OF OF

F(u,t) = Fo + (6—u)n(u )+ <E>n(t 1)+ 0  (48)

e This represents a second-order-accurate, locally-linear approximation

to F'(u,t) that is valid in the vicinity of the reference station ¢,

e Locally time-linear representationof 4% = F(u,t)

- (30). 00 (= (3) )+ () - v




Implementation of the Trapezoidal Method'

The trapezoidal method is given by

1
Upt1 = Up + §h[Fn+1 + E,] + hO(h?) (49)

Note hO(h?): emphasizes second order accurate of method

Using Eq. 48 to evaluate Fi, 11 = F(tUni1,tni1)
OF

ou

+h<%—f)n +O(h?) + Fn]

1
Unt1 = Un + §h |:Fn + (—) (Unt1 — Un) (50)

+hO(h?) (51)

Note that the O(h?) term within the brackets (which is due to the
local linearization) is multiplied by A and therefore is the same order
as the hO(h?) error from the trapezoidal method.




The local linearization updated at each time step has not reduced the

order of accuracy of a second-order time-marching process.
Assuming the F'(u) is not an explicit function of time, ¢

Reordering of the terms in Eq. 50
OF

1
[1 - 5’1(%%} Aun = hin

The delta form.




Implementation of the Implicit Euler Method'

e First-order implicit Euler method can be written
Unp4+1 = Up -+ th_|_1 (53)

e Introduce Eq. 49, rearrange terms

OF

1-0(25) w1, o0

e The only difference between the implementation of the

trapezoidal method and the implicit Euler method is the factor
of % in the brackets of the left side of Eqgs. 52 and 54.




Newton’s Method '

e Consider the limit h — oo of Eq. 54 obtained by dividing both
sides by h and setting 1/h = 0. There results

OF
—— | Au,, = F
(0u>n tn "

ory 17!
o= |(5) ]

e Newton method for finding the roots of the nonlinear F'(u) = 0.

e Implicit Fuler is just under-relaxed Newton’s Method




